TARGET MATHEMATICS Dr. AGYAT GUPTA Jhe Excellence Key... (M.Sc, B.Ed., M.Phill, P.hd)

CODE:1901-AG-TS-03

REG.NO:-TMC -D/79/89/36/63

General Instructions :-

- (i) All Question are compulsory :
- (ii) This question paper contains **36** questions.
- (iii) Question 1-20 in **PART-** A are Objective type question carrying 1 mark each.
- (iv) Question 21-26 in **PART -B** are sort-answer type question carrying 2 mark each.
- (v) Question 27-32 in **PART** -C are long-answer-I type question carrying 4 mark each.
- (vi) Question **33-36** in **PART -D** are long-answer-**II** type question carrying **6** mark each
- (vii) You have to attempt only one if the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 8 printed pages.
- (x) Code number given on the right-hand side of the question paper should be written on

the title page of the answer-book by the candidate.

CLASS – XII	MATHEMATICS
Time : 3 Hours	Maximum Marks : 80

PRE-BOARD EXAMINATION 2019 -20

PART – A (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four

choices (A) , (B) , (C) &(D) out of which ONLY ONE is correct .

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Visit us at www.agyatgupta.com					
Q.1	If a, b & c are non-zero real numbers, then					
	$\begin{vmatrix} b^2c^2 & bc & b+c \end{vmatrix}$					
	$\left[c^2 a^2 c a c + a \right]$					
	$D = \begin{vmatrix} a^2 b^2 & ab & a + b \end{vmatrix} =$					
0.0	(A) $abc(B) a^2 b^2 c^2(C) bc + ca + ab(D) zero$					
Q.2	In a skew symmetric matrix, the diagonal elements are all					
	(a) Different from each other (b) Zero					
03						
Q.0	If θ be the angle between the unit vectors a and b , then $\cos \frac{\sigma}{2} =$					
	$ \mathbf{a} - \mathbf{b} = \mathbf{a} + \mathbf{b} $					
	(a) $\frac{-}{2} \mathbf{a} - \mathbf{b} $ (b) $\frac{-}{2} \mathbf{a} + \mathbf{b} $ (c) $\frac{-}{ \mathbf{a} + \mathbf{b} }$ (d) $\frac{-}{ \mathbf{a} - \mathbf{b} }$					
Q.4	A man and his wife appear for an interview for two posts. The					
	probability of the husband's selection is $\overline{7}$ and that of the wife's					
	1					
	selection is $\overline{5}$. What is the probability that only one of them will be					
	selected					
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$					
	(a) - 7 (b) - 7 (c) - 7 (d) None of these					
Q.5	The shortest distance of the point (a, b, c) from the x-axis is					
	(a) $\sqrt{(a^2+b^2)}$ (b) $\sqrt{(b^2+c^2)}$ (c) $\sqrt{(c^2+a^2)}$ (d) $\sqrt{(a^2+b^2+c^2)}$					
Q.6	If $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \operatorname{cosec} x)$, then $x =$					
	3π π π					
	(a) $\frac{5\pi}{4}$ (b) $\frac{4}{4}$ (c) $\frac{3}{3}$ (d) None of these					

Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

Visit us at www.agyatgupta.com						
	the indicate point; $f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3}, & x \neq 3\\ k; & x = 3 \end{cases}$ at $x = 3$.					
Q.13	The following system of equation $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y - 3z = 0$ has a solution other than $x = y = z = 0$ for $\lambda =$					
Q.14	Oil is leaking at the rate of 16 mL/s from a vertically kept cylindrical drum containing oil. If the radius of the drum is 7 cm and its height is 60 cm, The rate at which the level of the oil is changing when the oil level is 18 cm is					
	OR					
	The minimum value of the function $y = 2x^3 - 21x^2 + 36x - 20$ is					
Q.15	If \vec{a} and \vec{b} are non-collinear vectors and $\vec{A} = (2x+3y-1)\vec{a}+(3x+2y+5)\vec{b}$ & $\vec{B} = (-x-4y)\vec{a}+(3x-4y+7)\vec{b}$, Then $(x,y) =$ such $7\vec{A} = 3\vec{B}$.					
	If $a=3i-j-4k$, $b=-2j+4j-3k$, $c=i+2j-k$. Then the unit vector					
	parallel to $\vec{3a-2b+4c} =$					
	(Q16 - Q20) Answer the following questions					
Q.16	Let A is a symmetric and B is a skew-symmetric matrix, such that					
	$A - B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$ Then find 2A .					
Q.17	Evaluate: $\int_{0}^{1} \cot^{-1}(1-x+x^2) dx.$					
Q.18	Write the primitive of $\sqrt[3]{\sin^2 x \sec^{14} x}$					

Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ;Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyPh. : 4010685(O), 7000636110(O)Mobile : 9425109601(P)

Target Mathematics by- Dr.Agyat Gupta4visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com			Visit us at www.agyatgupta.com			
Q.19	$\int \sin(x-\alpha)$	Q.25	Find the distance of (3, -5, 12) from its image in the x-axis.			
	Evaluate: $\int \sqrt{\frac{1}{\sin(x+\alpha)}} dx$.	Q.26	Four cards are drawn successively with replacement from a well shuffled			
	OR 2.1		deck of 52 playing cards. What is the probability that only 2 cards are spades?			
	Evaluate: $\int \frac{x^2 dx}{x^2 + 6x + 12}.$	PART - C (Question 27 to 32 carry 4 mark each.)				
Q.20	If m and n are the order and degree, respectively of the differential	Q.27	Let N denote the set of all natural number and R be a relation on $N \times N$			
	equation $y = \left(\frac{dy}{dx}\right)^3 + x^3 \left(\frac{d^2y}{dx^2}\right)^2 - xy = \sin x$, then write the value of m + n.		defined by $(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$. Cheque whether R is an equivance relation			
	PART – B (Question 21 to 26 carry 2 mark each.)	Q.28	If x cos(a+y)= cos y then prove that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$. Hence show that			
Q.21	Solve for $x:(6\sin^{-1}x)^2 + (6\cos^{-1}x)^2 = 5\pi^2$.		$\sin a \frac{d^2 y}{dx^2} + \sin 2(a + y) \frac{dy}{dx} = 0$.			
	\mathbf{OR}		OR			
	Let $f, g: \Lambda \to \Lambda$ be two functions defied as $f(x) = x + x \&$		dv = dv = dv = dv			
	$g(x) = x - x \forall x \in R$ then find fog and gof.		If y = e ^{-x} .cos bx, then prove that $\frac{1}{dx^2} - 2a \frac{y}{dx} + (a^2 + b^2)y = 0$.			
Q.22	If $Xy = e^{(x-y)}$, then show that $\frac{dy}{dx} = \frac{y(x-1)}{x(y+1)}$.	Q.29	Solve the differential equation $dy + (3y \cot x - \sin 2x) dx = 0$ given $y = 2$ when $x = \pi/2$.			
Q.23	A kite is moving horizontally at a height of 151.5 meters. If the speed of	Q.30	$\pi/2$ $\pi/2$ π			
	kite is 10 m/s, how fast is the string being let out; when the kite is 250 m		Prove that: $\int_{0} \log \sin x dx = \int_{0} \log \cos x dx = -\frac{\pi}{2} \log 2.$			
	is 1.5 m.		OR			
Q.24	Find the value (s) of λ , such that the volume of a parallelepiped whose		Evaluate: $\int \frac{1}{\sin x - \sin 2x} dx$			
	adjacent edges are represented by vectors $\lambda_1 - 2j, 3j + k, 41 - 4k$ is 40 cu units		In an examination, 10 questions of true- false type are asked. A student			
	OR	Q.31	tosses a fair coin and determine his answer to each question. If the coin			
	Vectors $\vec{a}, \vec{b}, \vec{c}$ are of the same magnitude and taken pairwise in order		falls heads, he answers true and if it falls tails, he answers false. Show			
	form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ find \vec{c} .		that the probability that he answers at most 7 questions correctly is $\frac{121}{128}$.			
	Target Mathematics by- Dr.Agyat Gupta		Target Mathematics by- Dr.Agyat Gupta			
visit ı	us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony	visit us	: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony			

Ph.: 4010685(O), 7000636110(O) Mobile : 9425109601(P)

6 visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph.: 4010685(O), 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

OR

Suppose a girl throws a die . If she gets a 1 or 2, she tosses a coin three times and note the number of heads . If she gets a 3, 4, 5 or 6, she tosses a coin once and notes whether a heads or tail is obtained . If she obtained exactly one head ;what is the probability that she threw 3, 4, 5 or 6 with the die .

Q.32 Postmaster of a post office wishes to hire extra helpers during the Diwali season, because of a large increase in the volume of mail handling and delivery. Due to the limited office space and the budgetary conditions, the number of temporary helpers must not exceed 10.According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives Rs. 225 a day and a woman receives Rs. 200 a day. How many men and women helpers should be hired to keep the pay-roll at a minimum? Formulate an LPP and solve it graphically.

PART - D (Question 33 to 36 carry 6 mark each.)

Q.33	Using	properties	0	f determinants, prove that		
	$\frac{(a + b)^2}{c}$	С	с			
	а	$\frac{(b + c)^2}{a}$	а	$= 2(a + b + c)^{3}$.		
	b	b	$\frac{(c + a)^2}{b}$			
	OR A university gives scholarships for those students who take any of the					
	below subj	ects as an ac	lditional	subject in first year, second year, third year		
Target Mathematics by Dr Agyat Cunta 7						

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com

	of graduation. From the table given below, form a set of simultaneous					
	equations and check the consistency.					
		Sr.	Subject	No. Of	No. of	No. of
		No		students in	students in	students in
				1 st year	2 nd year	3 rd year
		1.	Industrial Waste	1	3	6
		2.	Organic Waste	1	1	7
		3.	e- Waste	1	1	8
			Amount Received	Rs. 5000	Rs. 7000	Rs. 35800
Q.34	Find the area of the origin : $\{(x, y): 0 \le y \le x^2, 0 \le y \le x + 2; 0 \le x \le 3\}$					
Q.35	Show that the normal at any point θ to the curve $x = a \cos \theta + a \theta \sin \theta$					
	and $y = a \sin \theta - a \theta \cos \theta$ is at constant distance from the origin.					
	OR					
	The sum of the surface areas of a rectangular parallelepiped with side x. $2x$					
	and $\frac{x}{3}$ and a sphere gives to the constant. Prove that the sum of their					
	volume is minimum if x is equal to three times the radius of sphere. Find					
	the minimum value of the sum of the volumes.					
Q.36	Find the vector equation of the plane through the line of intersection of the					
	planes $x + y + z = 1$ and $2x + 3y + 4z = 5$ which is perpendicular to the					
	plane $x - y + z = 0$. Hence find whether the plane thus obtained contains					
	the line $\frac{x+2}{5} = \frac{y-3}{4} = \frac{z}{5}$ or not					
	*********//*******					
	शिक्षा की जड़ कड़वी है पर उसके फल मीठे है.					

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)